US009471532B2

a2 United States Patent
Black et al.

US 9,471,532 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) REMOTE CORE OPERATIONS IN A
MULTI-CORE COMPUTER

(75) Inventors: Richard John Black, Cambridge (GB);
Timothy Harris, Cambridge (GB);
Ross Cameron Mcllroy, Cambridge
(GB); Karin Strauss, Seattle, WA (US)
(73) Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1017 days.
(21) Appl. No.: 13/025,446
(22) Filed: Feb. 11, 2011
(65) Prior Publication Data
US 2012/0210071 Al Aug. 16, 2012
(51) Imt.CL
GO6F 12/00 (2006.01)
GO6F 15/167 (2006.01)
GO6F 12/08 (2016.01)
(52) US. CL
CPC ... GO6F 15/167 (2013.01); GOGF 12/0802
(2013.01); GO6F 12/084 (2013.01); GO6F
12/0811 (2013.01); GOGF 12/0842 (2013.01);
GO6F 12/0866 (2013.01)
(58) Field of Classification Search
CPC ... GOG6F 12/0802; GO6F 12/0811; GOG6F
12/084; GOGF 12/0842; GOG6F 12/0866;
GO6F 15/167
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,263,598 B2 8/2007 Ambuel
7,320,056 B2 1/2008 Shimada et al.
2005/0278483 Al* 12/2005 Andruszkiewicz et al. .. 711/114

2006/0075197 Al
2006/0080513 Al
2006/0107098 Al*

4/2006 Shimada et al.
4/2006 Beukema et al.
5/2006 Maki et al.ccoovvennnnne 714/6

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101430651 A 5/2009
CN 101510191 A 8/2009
(Continued)

OTHER PUBLICATIONS

Baumann, et al., “The Multikernel: A New OS Architecture for
Scalable Multicore Systems”, retrieved on Jan. 12, 2011 at <<http://
www.cs.brown.edu/courses/csci2750/p29-baumann.pdf>>, ACM,
Symposium on Operating Systems Principles (SOSP), Big Sky,
Montana, Oct. 2009, pp. 29-43.

(Continued)

Primary Examiner — Aracelis Ruiz
(74) Attorney, Agent, or Firm — Tom Wong; Micky
Minhas; Zete Law, PL.L.C.

(57) ABSTRACT

A multi-core processor with a shared physical memory is
described. In an embodiment a sending core sends a memory
write request to a destination core so that the request may be
acted upon by the destination core as if it originated from the
destination core. In an example, a data structure is config-
ured in the shared physical memory and mapped to be
accessible to the sending and destination cores. In an
example, the shared data structure is used as a message
channel between the sending and destination cores to carry
data using the memory write request. In an embodiment a
notification mechanism is enabled using the shared physical
memory in order to notify the destination core of events by
updating a notification data structure. In an example, the
notification mechanism triggers a notification process at the
destination core to inform a receiving process of a notifica-
tion.

20 Claims, 13 Drawing Sheets

1302

1302,

CORE CORE

CORE

application |, 1310
software

)) l I .
| interconnect } ~
1306 :|: 1312
,—/
Cormmunization 1316

Mermory interface 1314
operating |,..1308 Jaspay
system inpuy [device

output

controller user

input
device

1318

1320

US 9,471,532 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
2006/0259705 Al

2008/0091884 Al
2008/0244231 Al

11/2006 Cousin et al.
4/2008 Piry et al.
10/2008 Kunze et al.

FOREIGN PATENT DOCUMENTS

CN 101477511 B 8/2010
™ 389858 B 5/2000
™ 567413 B 12/2003
™ 1283348 B 7/2007

OTHER PUBLICATIONS

Black, et al., “Barrelfish: A Multikernel for multicore”, retrieved on
Jan. 12, 2011 at <<http://download.intel.com/corporate/education/
emea/event/irc/files/presentations/dew/T1_RichardBlack.pdf>>,
Microsoft Corporation, Sep. 22, 2010, pp. 1-51.

Bracy, et al., “Disintermediated Active Communication”, IEEE
Computer Architecture Letters, vol. 5, 2006, pp. 1-4.

Chatterjee, et al., “Optimizing a Multi-Core Processor for Message-
Passing Workloads”, retrieved on Jan. 12, 2011 at <<http://ispass.
org/ucas5/session3__2_ utah.pdf>>, Workshop on Unique Chips
and Systems (UCAS), Boston, Massachusetts, Apr. 2009, pp. 1-8.
Fensch, et al., “An OS-Based Alternative to Full Hardware Coher-
ence on Tiled CMPs”, IEEE Proceedings of Symposium on High-
Performance Computer Architecture, 2008. pp. 355-366.

Hayter, “A Workstation Architecture to Support Multimedia”, St
John’s College, University of Cambridge, PhD Dissertation, Sep.
1993, pp. 1-111.

Kumar, et al., “Carbon: Architectural Support for Fine-Grained
Parallelism on Chip Multiprocessors”, ACM, Proceedings of Intl

Symposium on Computer Architecture (ISCA), San Diego, Cali-
fornia, Jun. 2007, pp. 162-173.

Pugsley, et al., “SWEL: Hardware Cache Coherence Protocols to
Map Shared Data onto Shared Caches”, retrieved on Jan. 12, 2011
at <<http://www.cs.utah.edu/~rajeev/pubs/pactlOp.pdf>>, ACM,
Intl Conference on Parallel Architectures and Compilation Tech-
niques (PACT), Vienna, Austria, Sep. 2010, pp. 1-11.

Sanchez, et al.,, “Flexible Architectural Support for Fine-Grain
Scheduling”, retrieved on Jan. 12, 2011 at <<http://csl.stanford.
edu/~christos/publications/2010.adm.asplos.pdf>>, ACM, Proceed-
ings of Intl Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Pittsburgh, Penn-
sylvania, Mar. 2010, pp. 311-322.

Stromblad, “The Future Multicore OS: Future Challenges for
Embedded Operating Systems and Applications”, retrieved on Jan.
12, 2011 at <<www.sics.se/files/Enea_ MC__day.pdf>>, ENEA at
Swedish Institute of Computer Science (SICS), 2008, pp. 1-30.
von Eicken, et al., “Active Messages: a Mechanism for Integrated
Communication and Computation”, ACM, Proceedings of Intl Sym-
posium on Computer Architecture (ISCA), 1992, pp. 430-440.
“Fourth Office Action Issued in Chinese Patent Application No.
201210030338.2”, Mailed Date: Apr. 27, 2015, 7 Pages.

“First Office Action and Search Report Issued in Chinese Patent
Application No. 201210030338.2”, Mailed Date: Dec. 25, 2013, 12
Pages.

“Office Action Issued in Chinese Patent Application No.
201210030338.2”, Mailed Date: Sep. 2, 2014, 15 Pages.

“Notice of Allowance Issued in Taiwan Patent Application No.
1011011257, Mailed Date: Oct. 14, 2014, 6 Pages.

International Search Report and the Written Opinion of the Inter-
national Searching Authority dated Aug. 29, 2012 for International
Application No. PCT/US2012/024776, 9 pages.

“Third Office Action Received for Chinese Patent Application No.
201210030338.2”, Mailed Date: Dec. 11, 2014, 6 Pages.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 13 US 9,471,532 B2

104

114 / 114
C C

core core

|]
[cache | | cache |
& B
T

118

FIG. 1

U.S. Patent Oct. 18, 2016

Sheet 2 of 13

US 9,471,532 B2

FZJOO
CORE
202
registers
notification p_/204
control registers
extended 206 thread 210
TLB Ol translaton [~ 1~
translation lookaside buffer buffer (TTB)
notification white list 208 | notification 212
(NWL) | processing
uni

FIG. 2

U.S. Patent Oct. 18, 2016 Sheet 3 of 13 US 9,471,532 B2

,300
CORE
K
registers

notification pV304

control registers

thread 312

translation lookaside buffer ,_3’06 translaation |~

(TLB) buffer (TTB)
communication translation 308 notification /314

buffer r—~ processing [

(CTB) unit

notification white list ,-_/3 10
(NWL)

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 13 US 9,471,532 B2

422
PHYSICAL MEMORY ~
420
L3 cache —~
/ 416 \ 418
L2 cache —~/ L2 cache —~
/ K 410 M‘m
408 v — < 414
" cache 1 cache 2 ~ cache 3 cache 4
412
402
400 — 406
N~ C1 C2 A~ C3 C4 —~
404

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 13 US 9,471,532 B2

configure data structure at shared physical
) . 500
memory and associate the data structure with |~
a sending core and a destination core to build
a message channel

send a memory write request from the 504
sending core to the destination core Ot
using the interconnect
receive the memory write 506
request at the destination —~/
core

execute the memory write request at the

destination core as if it originated from the 508
destination core by writing a value into the ™

destination core’s cache so that it is visible to
processes running at the destination core

at the destination core: execute a “data 510
done” instruction to indicate that the value is
no longer needed

In response to the “data done” instruction, if the
value is in the destination core’s cache then ,\912
delete it without writing the value out to shared
memory

FIG. 5

U.S. Patent Oct. 18, 2016 Sheet 6 of 13 US 9,471,532 B2

operating system kernels at sending and 600
destination cores map a common area of |~
physical memory into their virtual address

spaces
operating system data structures 602
updated to configure message —~
channel

FIG. 6

U.S. Patent Oct. 18, 2016 Sheet 7 of 13 US 9,471,532 B2

700
/_J
data_send (v_addr, val) execution
702
~

perform address translation and protection
checks on v_addr to obtain associated
physical address p_addr

look up destination core ,\,7 04

for v_addr

send a remote-write (p_addr, val) 706
message to the target core on the [
message channel

FIG.7

U.S. Patent Oct. 18, 2016 Sheet 8 of 13 US 9,471,532 B2

look up destination core ,\900

for v_addr by

AN

use a buffer (CTB) at each 802 804
core to cache control —~ use an extended TLB ~
metadata
806

make a lookup in CTB in L~
parallel with TLB lookup

508 fill CTB by hardware 812
) . from a software
NN if no entry in CTB maintainedmcljata 7
structure

generate exception and switch ,\910

execution to OS kernel

OS kernel uses software —

managed data structures ,\f 4
to find control metadata
and installs that in CTB

816
re-execute failed instruction [~

FIG. 8

U.S. Patent

Oct. 18, 2016 Sheet 9 of 13

900
L~/

US 9,471,532 B2

data_recv (v_addr) 902

L~/

perform address translation and
protection checks on v_addr to obtain
physical address p_addr

Return contents of p_addr either
from a local cache or fetching it
into a local cache

904

906
L~/

data_done (v_addr) 908
L~/

perform address translation and
protection checks on v_addr to obtain
physical address p_addr

mark contents of p_addr as clean in
local cache so it does not need to be
written out to memory

910

FIG. 9

U.S. Patent Oct. 18, 2016 Sheet 10 of 13 US 9,471,532 B2

receive remote_write (p_addr, val) at ,.\1/000
destination core
if p_addr is present in a cache local 1002
r~

to destination core then update the
cached value to val

if p_addr is not present in a cache ,\1,004

local to destination core then

AN

1006 forward the write to
" memory as a write to insert p_addr into 1008

p_addr the cache localto ™

the destination core

FIG. 10

U.S. Patent Oct. 18, 2016 Sheet 11 of 13 US 9,471,532 B2

configure notification data structure 1100
at shared physical memory and -
inform each participating core

at a sending core obtain information about | 1102
which of a set of events has occurred
. 1104
check notification white list (optional) ~

send a memory notify request from the sending core

to a destination core; the instruction being to write a |,

value which represents which of the set of events has
occurred

receive the memory notify request at the 1108
. . y—~/
destination core

executing the memory notify request as if it originated
from the destination core and 1110
so as to update the notification data structure by ™~
logical OR with the value specified by
the memory notify request

1112 1114
if the address of the if the address of the
notification data structure is notification data structure is
cached then it is updated not cached then it is
in the cache forwarded to memory

FIG. 11

U.S. Patent

Oct. 18, 2016 Sheet 12 of 13 US 9,471,532 B2

configure notification registers 1200
at core to hold a watch flag, L~

a mask, a watched area,
and a notification target function

when the watch flag is set and a notification is
received from a sending core for a location in
the watched area form a logical AND of the ,.\1,202
contents of the watched area and the mask;
proceed to 1204 when the result of the logical
AND is non-zero

clear the watch flag; atomically read
and clear the contents of 1204
the watched area call the target notification [~~~
function with the prior contents of the watched
area as a parameter

1206

reset the watch flag —~/

FIG. 12

U.S. Patent

Oct. 1

8,2016 Sheet 13 of 13

US 9,471,532 B2

1300
/‘/
1302 1302
CORE CORE CORE CORE (XY
> I I 1304
interconnect —~
1306 1312
e
communication 1316
Memory interface 1314
operating ,_\1/308 display
system input/ device
1310 output
application |1 controller I(_ user
software ‘)‘ input
device
1318

1320

FIG. 13

US 9,471,532 B2

1

REMOTE CORE OPERATIONS IN A
MULTI-CORE COMPUTER

BACKGROUND

Multi-core processors are increasingly widespread and
are used in many application domains to give performance
gains where software processes are parallelized so that they
run on multiple cores simultaneously. Each core may be
thought of as part of a processor that performs reading and
executing of instructions; for example, each core may be a
central processing unit (CPU) within a single computing
system. Generally speaking, single-core processors are able
to process only one sequence of instructions at a time. A
multi-core processor has two or more independent cores
which may be provided in a single physical device such as
a chip or chip package. The multiple cores may or may not
have access to a shared physical memory although the
present application is concerned with multi-core processors
which do have a shared physical memory.

A shared physical memory or memories may be used to
enable communication between the multiple cores and may
be a block of random access memory (RAM) or other
suitable memory. A hierarchy of caches is typically provided
to speed up memory accesses from the cores to the memory.
The cores, caches, and memory are typically connected to
each other by use of an interconnect device. However, use of
a shared physical memory in this way brings technical
hurdles. For example, coherency between the various caches
is typically maintained using a cache coherence protocol.
However, cache coherency mechanisms are computationally
expensive and use valuable interconnect resources.

The embodiments described below are not limited to
implementations which solve any or all of the disadvantages
of known multi-core processors which use shared physical
memory.

SUMMARY

The following presents a simplified summary of the
disclosure in order to provide a basic understanding to the
reader. This summary is not an extensive overview of the
disclosure and it does not identify key/critical elements of
the invention or delineate the scope of the invention. Its sole
purpose is to present a selection of concepts disclosed herein
in a simplified form as a prelude to the more detailed
description that is presented later.

A multi-core processor with a shared physical memory is
described. In an embodiment a sending core sends a memory
write request to a destination core so that the request may be
acted upon by the destination core as if it originated from the
destination core. In an example, a data structure is config-
ured in the shared physical memory and mapped to be
accessible to the sending and destination cores. In an
example, the shared data structure is used as a message
channel between the sending and destination cores to carry
data using the memory write request. In an embodiment a
notification mechanism is enabled using the shared physical
memory in order to notify the destination core of events by
updating a notification data structure. In an example, the
notification mechanism triggers a notification process at the
destination core to inform a receiving process of a notifica-
tion.

Many of the attendant features will be more readily
appreciated as the same becomes better understood by

10

15

20

25

30

35

40

45

50

55

60

65

2

reference to the following detailed description considered in
connection with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
following detailed description read in light of the accompa-
nying drawings, wherein:

FIG. 1 is a schematic diagram of two multi-core comput-
ers, one with shared memory and one without;

FIG. 2 is a schematic diagram of an example core of a
multi-core computer;

FIG. 3 is a schematic diagram of another example core of
a multi-core computer;

FIG. 4 is a schematic diagram of a multi-core computer
with a hierarchical cache and shared physical memory;

FIG. 5 is a flow diagram of a method of sending a memory
write request between cores in a multi-core computer,
receiving that instruction and executing it;

FIG. 6 is a flow diagram of more detail of a configuration
process for use with the method of FIG. 5;

FIG. 7 is a flow diagram of a method of sending a memory
write request;

FIG. 8 is a flow diagram of a method of identifying a
destination core;

FIG. 9 is a flow diagram of a method of reading data
previously updated by a memory write request and a method
when data received from another core is no longer needed;

FIG. 10 is a flow diagram of a method of receiving a
memory write request from a remote core;

FIG. 11 is a flow diagram of a notification process;

FIG. 12 is a flow diagram of a process at a receiving core
for implementing a notification process with nudging;

FIG. 13 illustrates an exemplary multi-core computing-
based device in which embodiments of the remote memory
writing and notification processes described herein may be
implemented.

Like reference numerals are used to designate like parts in
the accompanying drawings.

DETAILED DESCRIPTION

The detailed description provided below in connection
with the appended drawings is intended as a description of
the present examples and is not intended to represent the
only forms in which the present example may be constructed
or utilized. The description sets forth the functions of the
example and the sequence of steps for constructing and
operating the example. However, the same or equivalent
functions and sequences may be accomplished by different
examples.

Although the present examples are described and illus-
trated herein as being implemented in a multi-core computer
system with shared physical memory and without cache
coherency, the system described is provided as an example
and not a limitation. As those skilled in the art will appre-
ciate, the present examples are suitable for application in a
variety of different types of multi-core computer systems
including those with cache coherency.

FIG. 1 is schematic diagram of two multi-core computers
101, 104, one with shared memory and one without. A first
multi-core computer 101 comprises two nodes 100, 102
each having a core 106 with a cache 108. Each node has its
own memory 110 and the nodes communicate using a
network interface 112 as illustrated. In contrast the embodi-
ments described here use a multi-core computer with shared
physical memory such as that illustrated in FIG. 1 as

US 9,471,532 B2

3

computer 104. Computer 104 has two cores 114 each having
a cache 116. The cores share a single physical memory 118
which may be random access memory (RAM) or memory of
other suitable type. The cores may be of different types, for
example, some may be designed for particular tasks such as
graphics processing and others may be designed for general
purpose computing.

Writing data into and out of physical memory 118 is time
consuming for a variety of reasons. For example, each core
114 may be provided as a chip which is physically located
independently of the physical memory 118. In order to
enable faster data access each core may have an associated
cache 116. Although only one cache per core is illustrated in
FIG. 1 in practice there may be a plurality of caches in a
hierarchical structure in order to increase the available cache
capacity. Using caches enables data access to be speeded up
although it also means that in some cases, data accessed
from a cache may not be up to date. In order to enable the
most up to date data to be used cache coherency mechanisms
have previously been used. Cache coherency mechanisms
may require significant interconnect resources. In some
situations cache coherency mechanisms may use as much as
30% of a multi-core computer’s power and interconnect
resources.

FIG. 2 is a schematic diagram of an example core of a
multi-core computer. Many conventional components of a
core are not shown for clarity. It comprises one or more
registers 202 which comprise a plurality of notification
control registers 204 provided to enable implementation of
a notification process as described in more detail below with
reference to FIGS. 11 and 12. It also comprises an extended
translation lookaside buffer 206 (TLB) which is extended to
enable implementation of a process for identifying which of
a plurality of remote cores is to be a destination core for a
send process. Optionally a notification white list (NWL) 208
is provided for use in implementing the notification process
in cases where notification is protected. This is described in
more detail later in this document. Optionally a thread
translation buffer 210 (TTB) is provided and also optionally,
a notification processing unit 212. FIG. 3 is a schematic
diagram of another example core 300 of a multi-core com-
puter. Many conventional components of a core are not
shown for clarity. The core comprises registers 302 which
comprise notification control registers 304 in the same
manner as described above for FIG. 2. A translation looka-
side buffer 306 is provided as well as a separate communi-
cation translation buffer (CTB) 308 which is used to enable
implementation of a process for identifying which of a
plurality of remote cores is to be a destination core for a send
process. A notification white list 310 may also be provided
as described above with reference to FIG. 2. Optionally a
thread translation buffer 312(TTB) is provided and also
optionally, a notification processing unit 314.

FIG. 4 is a schematic diagram of a multi-core computer
with a hierarchical cache and shared physical memory. In
this example there are four cores 400, 402, 404, 406
although this is not essential and a hierarchical cache
structure. Two or more cores may be provided. Each core
has a level 1 cache. For example, core 1 400 has a level 1
cache 408, core 2 has a level 1 cache 410, core 3 has a level
1 cache 412 and core 4 has a level 1 cache 414. Two level
2 caches 416, 418 are provided; each level 2 cache is shared
by two level 1 caches in this example. A level three cache
420 is also provided which is shared by the level 2 caches
416, 418. The level three cache 420 is in communication
with physical memory 422. The hierarchical cache structure
illustrated in FIG. 4 is an example only and other levels of

20

25

40

45

55

4

cache structure may be used with different numbers of
caches at each level and different arrangements of cache
sharing. Each core is physically closest to its level 1 cache
and this limits the physical size of the level 1 cache because
of space requirements on the chip. Caches of higher level are
further away from the cores and so may be physically larger.
As distance away from the cores increases so does the time
taken for communication between a cache and a core. The
cores, caches, and memories are connected by an intercon-
nect, and the interconnect is used to move data between
them. Multi-core computers which use cache coherency
mechanisms send data and metadata over the interconnect
between branches of the hierarchical cache structure to
provide up to date data to processes at the cores. Sending
data and metadata across the interconnect of the hierarchical
cache structure is time consuming, complex and resource
intensive.

In an embodiment, no cache coherency mechanism is
provided at the multi-core computer. For example, the core
4 406 in FIG. 4 may access a memory location whose value
is present in cache 414, and core 1 may access the same
memory location whose value is also present in cache 408.
If core 4 writes to the memory location then, without cache
coherency, core 1 cannot be confident of seeing the new
value when it reads from its cache 408. By using a process
to send a memory write request between cores as now
described with reference to FIG. 5 up to date data is ensured
without the need for cache coherency. For example, the
arrow 424 in FIG .4 illustrates this process at a high level. If
a process running at core 1 400 takes input from a process
running at core 4 406 then core 4 may be configured to send
a memory write request to the level 1 cache of core 1 400.
This is illustrated by arrow 424. The memory write request
is received at cache 1 408 and may be interpreted as a
memory write received directly from core 1 400. In this way
the data from the process running at core 4 is provided to
core 1 in a simple and effective manner. The memory write
request may be used to efficiently construct a message
channel in a data structure at the shared physical memory.
Performance benefits are achieved. For example, fast path
message send operations are provided which operate with a
single underlying message between the sending and desti-
nation cores. This reduces the overhead on individual com-
munication. It also maintains locality within the implemen-
tation so that a sending core sending to a destination core
does not involve some other core.

In another embodiment a cache coherency mechanism IS
provided at the multi-core computer such as that illustrated
in FIG. 4. In this case the same process to send a memory
write request between cores may be used as described above.
In this case the process of sending the memory write request
enables the burden on the cache coherency mechanism to be
reduced and this gives performance benefits.

The example described with reference to FIG. 4 uses a
single shared physical memory. However, the process of
sending the memory write request between cores, and the
other processes described herein, are also applicable where
architectures having more than one shared physical memory
are used. For example, a non-uniform memory architecture
(NUMA) with a memory per socket.

FIG. 5 is a flow diagram of a method of sending a memory
write request between cores in a multi-core computer,
receiving that instruction and executing it. This method
includes steps at a sending core and also at a destination
core.

A data structure is configured at a physical memory which
is shared by two or more cores in a multi-core computer. The

US 9,471,532 B2

5

data structure is associated 500 with a sending core and a
destination core (which are both cores in the multi-core
computer). The data structure may be any convenient
method for software to build a message channel between the
sending and destination cores. More detail about this con-
figuration process is given below with reference to FIG. 6.

A memory write request is sent 504 from the sending core
to the destination core using the interconnect. In this way an
update to the data structure may be sent as the memory write
request from the sending core to the destination core. An
example of functional steps that may be carried out at a
sending core to implement sending of a memory write
request is described below with reference to FIG. 7.

The memory write request is received 506 at the desti-
nation core. An example of functional steps that may be
carried out to read a value previously updated at a destina-
tion core by a memory write request is described below with
reference to FIG. 9.

The memory write request is executed 508 at the desti-
nation core as if it originated from the destination core. That
is, the memory write request is executed from the destination
core. Since it is written from the destination core the
visibility of the update is coherent with respect to the
destination core. In some examples, this is done by writing
a value into the destination core’s local cache (level 1 cache)
so that it is visible to processes running at the destination
core. Other examples are described later in this document
with reference to FIG. 10.

Optionally, the destination core may indicate that it has
finished processing a value that has been sent to it. In that
case, the receiving core executes (510) a “data done”
instruction to indicate that the value is no longer needed. The
value may be deleted (512) from the receiving core’s local
cache without writing the value out to the shared physical
memory.

FIG. 6 gives more detail about the process of configuring
the message channel. Operating system kernels at the send-
ing and destination cores map a common area of physical
memory into the address spaces of processes running on
those cores. For example, when a message channel is to be
used between two processes, then the common area of
physical memory is mapped into the virtual address spaces
of the processes. The common area of physical memory
comprises the data structure that is formed as part of the
method of FIG. 5. The data structure can take a variety of
forms. For example, it may be a circular buffer, block of
memory, vector, queue or heap or other data structure.
Operating system data structures are then updated to con-
figure the message channel, for example, to indicate that, at
the sending core, any data written to the data structure is to
be sent to the destination core. An operating system may also
configure that for example at the sending core that the data
structure may be written but not read and that, at the
destination core, the data structure may be read but not
written. Operations to send messages using the channel and
to implement notification may then be carried out using
unprivileged code, also referred to as user mode. In this way,
common-case operations may be carried out in user mode.
For example, this allows messages to be sent from user
mode and delivered to a destination core without a kernel-
mode interrupt on the destination core.

Many message channels may be established using the
process of FIG. 6 and used to send memory write requests
and notifications (as described below). In this way the
process is effective for large numbers of communication
channels. For example, to allow a system process to com-
municate with all other processes in the system.

10

15

20

25

30

35

40

45

50

55

60

65

6

Pseudo code operations are now described which provide
functional examples of how the sending and receiving
processes of FIG. 5 may be implemented. In practice an
implementation may adapt existing instructions to perform
these functions. For example, by adding prefixes before
existing instructions, or marking particular pages of virtual
or physical memory to indicate that operations on them
should be performed in a way to implement the functionality
described herein. Processor status flags may also be used to
indicate that memory operations are to be performed to
implement the functionality described herein.

An implementation may require that memory locations
accessed by these pseudo-code operations are not accessed
concurrently by ordinary memory reads and writes of other
processes which may be ongoing at the multi-core processor.
Such concurrent accesses may be considered a form of race
condition.

A pseudo code data_send operation 700 is described with
reference to FIG. 7. This may be used to implement the
process of sending a memory write request from the sending
core to the destination core (see step 504 of FIG. 5). This
operation may take two arguments, v_addr and val. v_addr
is the address for the representation of the data structure in
the sending core’s virtual memory and val is the value to be
written by the memory write request.

A sending core may obtain “val” in various ways.
Examples are now given: One implementation may take
“val” from the contents of a set of processor registers. An
alternative implementation may take “val” from the contents
of memory accessible to the sending core such as the current
contents of “v_addr” from the viewpoint of the sending
core’s cache. An implementation may impose constraints on
v_addr and val, such as that v_addr must be aligned to the
start of a cache line, or that the size of val must be a complete
cache line, or the size of val and alignment of v_addr are
such that no read-modify-write is required on a larger range
of addresses in order to effect the write.

At a sending core a process may implement such a
data_send operation by performing 702 address translation
and protection checks on v_addr to obtain an associated
physical address p_addr of the data structure in physical
memory. This is achieved using a translation lookaside
buffer. The sending core process looks up 704 the destina-
tion core for v_addr. More detail on this look up is given
below with reference to FIG. 8. It then sends a remote_write
(p_addr, val) message to the destination core on the message
channel.

The sending core process looks up 704 the destination
core for v_addr (see box 800 of FIG. 8). This look up may
be achieved in a variety of ways. In one example, a buffer
is used 802 at each core to cache control metadata. This
buffer may be referred to as a communication translation
buffer (CTB). The control metadata may comprise an iden-
tifier for a destination core or destination cache. Alterna-
tively, the control metadata may comprise an identifier for a
destination software thread and a separate mechanism be
used to translate the software thread identifier to an identifier
for a destination core or destination cache (a thread trans-
lation buffer TTB is one way to perform this second map-
ping). Alookup in the CTB may be made in parallel 806 with
translation lookaside bufter lookup. If no entry is found 808
in the CTB then an exception may be generated 810 and
execution switched to the operating system kernel. The
operating system kernel is then able to use software man-
aged data structures to find appropriate control metadata and
install that in the CTB. The failed instruction may then be
re-executed 816. In another example, if no entry is found in

US 9,471,532 B2

7

the CTB 808 then the CTB may be filled by hardware 812
from a software maintained data structure. In another
example, an extended translation lookaside buffer (extended
TLB) is used 804. For example a TLB is extended to include
control metadata. In this case steps 702 and 704 of FIG. 7 are
integrated as part of TLB lookup.

By configuring the CTB and or TLB system software is
able to control which processes can communicate. Protected
inter-process communication is achieved meaning that mes-
sages can be sent between different processes, rather than
only between threads operating in the same process. This
enables processes to be used to implement system functions
as in a multi-kernel or micro-kernel operating system.

A pseudo code data_receive operation 900 is described
with reference to FI1G. 9. This may be used to implement the
process of reading data previously updated by a memory
write request at the destination core (see steps 506 and 508
of FIG. 5). The data_receive operation 900 takes one argu-
ment v_addr which is the address for the representation of
the data structure in the receiving core’s virtual address
space. The process at the destination core performs address
translation and protection checks 902 on v_addr to obtain
the physical address p_addr of the data structure in shared
memory which implements the message channel. The pro-
cess returns 904 the contents of p_addr either from a local
cache or fetching it into a local cache.

A pseudo code data_done operation 906 is described with
reference to FIG. 9. This may be used to implement the
process of signaling that data is no longer needed by a
process (see steps 510 and 512 of FIG. 5). Data_done takes
one argument v_addr. Address and translation checks 908
are performed on v_addr to obtain the physical address
p_addr. The contents of p_addr are marked as clean in the
local cache of the destination core. The contents of p_addr
do not then need to be written out to memory.

A pseudo code remote_write operation 1000 is described
with reference to FIG. 10. This may be used to implement
the process at the destination core of executing the memory
write request (see step 508 of FIG. 5). Remote_write takes
two arguments, p_addr and the value to be written by the
received memory write request. If p_addr is present in a
cache local to the destination core then the cached value is
updated to val 1002. If p_addr is not present in a cache local
to the destination core 1004 then either: forward 1006 the
write to the next level of the cache memory hierarchy as a
write to p_addr; or allocate 1008 space in the cache local to
the destination core, possibly by evicting some other line,
thereby inserting p_addr into the cache local to the destina-
tion core. An implementation requires a policy to select
between these two alternatives; selecting between them
involves a trade-off between consuming cache space on the
destination core as data arrives (without knowing whether or
not the data will be read before being evicted from the
cache), versus incurring cache misses on the destination core
(if data is not stored in the cache, but is subsequently
accessed). Two examples of policies are now given. A
“forward by default” policy is to update a cached entry if it
is present and, otherwise, to forward the update to memory.
Software can use a conventional pre-fetch or read instruction
to bring location(s) into the cache if it expects them to be the
target of remote_write requests. A “buffer by default” policy
is to buffer an update in the cache if the destination thread
is currently running, and to forward the update to memory
if the destination thread is not running. This entails (i)
adding a destination-thread-ID to the contents of the
remote_write requests, and (ii) adding a current-thread-1D
status register to the core. A variant of “buffer by default” is

10

15

20

25

30

35

40

45

50

55

60

65

8

to limit the cache space used by remote_write requests to a
subset of the cache; for example, in a 4-way set associate
cache, remote_write requests may be restricted to writing
unbuffered data into 1 of the ways.

A notification process which uses a data-structure in the
shared memory established as in FIG. 5 is now described.
The notification may be used for a variety of different
purposes, for example, to indicate that it is time to perform
a garbage collection, or that it is time for a process to exit,
or that a given message channel requires attention. In
another example, a notification may be used to wake up a
sleeping core or to power down a core as part of an energy
conservation process. This notification process may be used
in conjunction with the process of sending memory write
requests to remote cores described herein and so may be
referred to as a “remote notification” process. Memory
regions used for notification are distinguished from ordinary
memory and from message-passing memory regions. The
same techniques used to implement the message channel are
used for delivering notifications, sending a “remote_notify”
request instead of a “remote_write” request.

A notification data structure is configured at a shared
physical memory of a multi-core computer. Each core to
participate in a notification scheme is informed 1100 of the
notification data structure. This is achieved in a configura-
tion phase in a manner similar to that described above with
reference to FIG. 6. In an example, the notification data
structure holds a shared bit-vector with each bit used to
indicate a different condition. A cache-line-sized vector may
be sufficient; a hierarchy can be built using multiple vectors
if more bits are needed. Other types of data structure may
also be used. A dedicated notification cache may be used at
each core to hold the contents of the notification data
structure (instead of using a normal data cache entry). This
may be done to avoid modification to the performance-
critical data cache but is not essential.

At a sending core information is obtained 1102 about
which of a set of events has occurred. This information is
condensed into a compact, low level representation. For
example, the information may comprise a list of message
channels on which messages have been sent and the com-
pact, low level representation may comprise a bit vector with
each bit associated with a set of message channels.

A notification white list is optionally checked 1104 by the
sending core. This enables a protected notification scheme to
be implemented which is described in more detail later. In
one implementation the notification white list comprises a
series of (addr,val) pairs, each indicating that it is valid for
the core to perform a notification to address “addr” so long
as the value carried in the remote_notify request contains
only bits that are set in “val”.

The sending core sends 1106 a memory notify request
from the sending core to a destination core using a message
channel established as described with reference to FIG. 5.
The memory notify request is to write a value which
represents which of the set of events has occurred. The
memory notify request is received at the destination core
1108 and executed 1110 as if it originated from the desti-
nation core and so as to update the notification data structure
by a logical OR operation. The logical OR operation is
between the value specified by the memory notify request
and existing values in the notification data structure. This
updates the notification data structure with information
about which events occurred. If the address of the notifica-
tion data structure is cached at the destination core then the

US 9,471,532 B2

9

update 1112 occurs at the cache. Other logical operations
may also be used, including but not limited to logical AND,
XOR.

If the address of the notification data structure is not
cached at the destination core then the update is forwarded
1114 to memory. Note that a memory notify request is
treated differently from a memory write request. This is
because a memory notify request requires the value carried
in the request (“val”) to be combined with the existing
contents of memory using a logical OR operation, rather
than simply being forwarded to memory without processing.
Various mechanisms are possible for performing this work.
Two examples are given. First, a core may replace “val” with
a binary value in which all bits are set to 1. This value can
be forwarded to memory in place of “val”. This can cause
spurious notifications to be signaled, but does not cause a
genuine notification to be missed. Second, a core may
include a notification processing unit that is responsible for
combining “val” with the existing contents of memory. The
notification processing unit accesses the memory system of
the machine, reads the current value from memory, com-
bines it with “val”, and writes the resulting value.

In this example, a sending core is able to notify a
destination core as to which of a set of events has occurred.
This is achieved by updating a notification data structure
which the destination core is able to watch. If the destination
core is busy and does not watch the notification data
structure it may miss an event. In another embodiment the
destination core is nudged or actively forced to call a
notification function when a notification is received.

In order to implement the “nudge” notification scheme
notification registers may be used at the destination core. In
an example, four notification registers are provided. These
are configured 1200 to hold a watch flag, a mask, a watched
area, and a notification target function. The mask indicates
whether or not the notification mechanism should perform
“nudge” operations. The mask and watched area indicate
which specific notifications should cause a “nudge” to occur.
The notification target function is any function which is to
be actively called in order to nudge the destination core
when an event occurs.

With reference to FIG. 12 when a notification is received
1202 from a sending core the destination core examines its
watch flag. If the flag is set, and if the destination address for
the notification is in the watched area, and if the logical AND
of the value of the notification and the mask is non-zero, then
a nudge is performed. To perform a nudge, a core clears the
watch flag 1204, atomically reads and clears the contents of
the watched area and calls the target notification function
with the prior contents of the watched area as a parameter.
The watch flag is then reset 1206 and the process returns to
waiting for a notification 1202.

A thread at the destination core may be interacting with
many different senders of messages, and by using the remote
notification process it is possible to avoid requiring the
destination core thread to poll a large number of message
channels. Each polling operation will either require an
access to main memory, or a local cache line which holds the
head of the message channel.

The notification process may also be implemented on
cache-coherent hardware. In this case the watched address is
one or more memory locations and coherence messages are
used to trigger notifications. The destination core holds a
line containing the watched area in shared or exclusive
mode. When it loses the line then it fetches it again after a
back-off delay and evaluates whether or not it needs to
deliver a notification. (This may be done either by extending

25

30

40

45

10

the normal cache, or as a separate special-case single-entry
cache). In summary, a cache coherency mechanism may be
used to interconnect the plurality of cores in some embodi-
ments. At the destination core, when a cache coherency
invalidation is noticed for the notification data structure a
fetch may be sent from the destination core for the notifi-
cation data structure.

As mentioned above a notification white list may option-
ally be used to implement a notification scheme with pro-
tection by which a sender is able to set only a specific set of
bits within specific locations. This may be used where the
sender and destination are separate processes (rather than
threads within the same process), or where multiple distinct
sender processes are used to send notifications to the same
destination process. In both of these cases, it is possible to
prevent a sender from being able to set notifications arbi-
trarily. For example, the operating system arranges that the
sender maps the notification address (address of the notifi-
cation data structure) without user-mode access. Each core
holds a new “notification white list” (NWL) comprising
soft-state associated with the sender that lists (address,
mask) pairs that this sender is permitted to send to. The
white list is initially empty, and is cleared on thread switch.
On a notify_send operation, the NWL is searched for the
target address, and the notification value is compared with
the allowable mask. If there is a miss, or if the value being
notified is not contained within the allowable mask, then an
exception occurs on the sender.

As with the CTB, the operating system on the sender
determines whether or not the notification is allowed and, if
s0, adds an entry to the NWL. In this way the CTB and NWL
are kept separate because the CTB deals with aggregate
regions such as pages, whereas the NWL deals with indi-
vidual addresses. Common instructions may be provided to
clear both of them as a single step.

In another embodiment, the NWL is implemented by the
operating system storing the permitted notification bits in
memory which is read-only to the notification sender, and
the CTB or extended-TLB stores for that page the destina-
tion core and physical address of the notification memory
(aside from the physical address of the NWL memory).
When the sending core attempts to write a notification to the
page the corresponding NWL cache line is first fetched, a
logical AND operation is performed, and the resulting
notification bits then travel as a remote_notify_request to the
destination core.

Optionally, an implementation may place virtual
addresses in remote_write and remote_notify requests
alongside or in place of physical addresses. In a “receiver
translated” implementation the remote_write and
remote_notify requests carry only a virtual address. Trans-
lation and protection checks are performed at the destination
core prior to the remote_write process (1002) or
remote_notify process (1110). Such an implementation may
omit address translation and protection checks in the
data_send and notify_send operations. Such an implemen-
tation may constrain remote_write and remote_notify opera-
tions to occur only between processes with the same virtual
memory mapping for the shared data structure.

Optionally, the destination core may indicate to the send-
ing core that it has completed processing a request such as
a remote_write request or a remote_notify request. A desti-
nation core C1 may send a response message to a sending
core C2. On receiving the response message core C2 can be
certain that the memory updates specified in the request
message are visible to processes running at core C1. In one
embodiment, a response is sent automatically to all requests.

US 9,471,532 B2

11

In another embodiment, core C2 indicates whether or not a
response is required. Core C2 may use responses to provide
ordering between a series of remote_write and remote_no-
tify_requests by requiring a response to an earlier request
before issuing a subsequent request. Core C2 may also use
responses to provide ordering between remote_write and
remote_notify requests and other processes via a
remote_fence operation (described below).

The remote write process and remote notify processes
described herein may be integrated with operating system
functions such as scheduling of threads, pre-emption of
threads, migration of threads within the machine, and so on.
This is beneficial in a multi-programmed machine in which
a core may be multiplexed between several processes over
time. More detail about this is now given.

Pre-emption or Migration of Sender T1

Upon pre-emption of T1 processes clear the CTB and
NWL before switching to a thread in a different protection
domain. The CTB and NWL hold soft-state that may be
rebuilt next time T1 runs.

Upon migration, it is possible to ensure that messages are
not re-ordered. For example, suppose that T1 migrates from
core C-Old to C-New, and that T1 is communicating with T2
on core C2. The implementation may provide that T2 does
not handle messages received from T1 on C-New before
finishing with messages received from T1 on C-Old. In an
example implementation it may be sufficient to defer
rescheduling the thread on a different core until an imple-
mentation-specific delay has elapsed (e.g., the product of the
maximum number of messages that may be buffered within
the implementation and the maximum time that may be
required to handle each message). This bound may be
acceptable because the handling of memory_write request
and memory_notify_request messages does not involve the
execution of software handlers. This delay may be exposed
to software via a new “remote_fence” operation that either
(1) delays until all messages will be guaranteed to be
handled, or (ii) communicates with each remote core in the
caller’s CTB and receives a response when the remote core
has completed handling all messages from the sender. In an
alternative implementation a “remote_fence” operation is
implemented using response messages: the “remote_fence”
operation delays until responses have been received from all
requests that have been sent.

Pre-emption or Migration of Receiver T2

Note that no special work is required upon pre-emption of
T2; remote_write and remote_notify messages may continue
to arrive and to be handled by the core that last ran T2
(updating main memory rather than the cache). This is
particularly likely to happen when T2 has blocked waiting
for data from T1, and so it may be desirable to allow this
forwarding to continue for some time in expectation that T2
will be resumed on the same core (rather than informing the
core running T1 that T2 has now been pre-empted).

If T2 is migrated from C-Old to C-New then it is possible
to arrange that messages are not lost. Messages might be lost
if they are forwarded to main memory from C-Old, while
C-New has a non-coherent copy of the same location in a
local cache. Consequently, the receiver may arrange that any
senders are aware of the receiver’s new location. Two
alternative implementations depending on whether or not a
TTB (thread translation buffer) is used are now described.

Migration without TTB: This problem is analogous to
changing a virtual-to-physical page translation (in effect, the
CTB caches information about thread locations, in the same
way that a TLB caches information about virtual pages’
locations in physical memory). Similar approaches to TLB

15

20

40

45

12

shoot-down can be used to support thread migration. Before
resuming the receiver T2 on C-New, the operating system
carries out the following process:

It identifies the set of cores that might be running threads
that are senders to T2 (e.g., from information maintained for
use by the CTB miss handler, or from the data structures
maintained when setting up shared memory between T1 and
T2).

It sends an inter-processor interrupt (IPI) to these cores.

The IPI handler flushes the CTB entries for pages shared
with T2, and executes a “remote_fence” to ensure that
messages sent just before the IPI are received before any
messages sent after the IPL.

Migration with TTB: The TTB provides a level of indi-
rection between thread IDs (e.g. T2) and core IDs (e.g.
C-New), and so migration entails changes to the mapping in
the TTB rather than in the CTB entries. Alternative TTB
implementations may provide hardware coherence between
TTBs.

In an alternative implementation the TLB, CTB or TTB
update required at a sending core may be performed by
associating the TLB, CTB or TTB with the address of an
operating system configuration data structure in memory of
which the TLB, CTB, or TTB is a cache, and sending a
remote_write_request for that configuration data structure to
the sending core from the core which is performing the
migration. The TLB, CTB or TTB will therefore be updated
in a way which is immediately visible to the sending core
without needing to send it an interrupt.

Changes to Memory Configuration at Sender T1

An operating system may reconfigure memory at sender
T1 so that the sender no longer has write access to a physical
page. For example, the operating system may remove write
permission for T1 to the physical page or it may change a
virtual-to-physical address translation so that a given virtual
page maps to a different physical page. Before completing
such a reconfiguration an operating system may use a
“remote_fence” to ensure that writes previously issued by
sender T1 have completed before the reconfiguration occurs.

Scheduling of Threads

In a multiprogrammed system it is useful for the operating
system running on one core to know when a given thread
assigned to the core becomes runnable. An extension to the
notification mechanism can be used to provide this infor-
mation by allowing a notification sent to T2 to implicitly
signal to the operating system that T2 is ready to run.

With this extension, each core has a kernel-mode notifi-
cation mechanism in addition to the user-mode mechanism
described above. In addition, each thread has an operating
system-assigned thread ID, and this ID is included in
“remote_notify” messages emitted to the thread. If a
“remote_notify” message arrives for a thread other than the
one that is currently running, then a kernel-mode notification
occurs. This occurs as if on a bit position indexed by the
target thread ID, relative to an address provided by the
operating system on the target core. (e.g., the operating
system may indicate that kernel-mode notifications should
be delivered at address 0xf0000000, and a notification to
thread ID 256 would be indicated by setting a bit at address
0xf0000020). As with user-mode notification, the resulting
value is compared with a mask; if the logical-AND of the
value and the mask is non-zero, then a notification is
delivered. Kernel-mode notifications are delivered via an
interrupt, typically causing the operating system to resched-
ule the thread being notified (either immediately, or at some
later time).

US 9,471,532 B2

13

Note that the use of a bitmap and mask allows the kernel
to elect not to receive notifications for a given thread (e.g.,
because it has already been notified), and allows multiple
notifications to accumulate in hardware (e.g., if further
notifications arrive while handling a given notification).

The processes described herein may also be arranged to
allow efficient integration of message passing with sched-
uling. For example, by allowing kernel-mode schedulers to
identify when a receiving process has a message available to
it and allowing user mode software to identify which of
various message channels has a message available (or con-
versely has space available for a new message to be sent on
it).

The remote write process and remote notify processes
described herein may provide all of, or one or more of:
execution of common-case operations in user-mode, pro-
tected inter-process communication, integration with oper-
ating system functions, ability for fast-path message send
operations, operation for large numbers of communication
channels and efficient integration of message passing with
scheduling. However, it is not essential for the processes
described herein to provide all these functionalities.

The remote write process and remote notify processes
described herein may provide protected inter-process com-
munication meaning that messages may be sent between
different processes, rather than only between threads oper-
ating in the same process. This is beneficial, for example,
when processes are used to implement system functions as
in a multi-kernel or micro-kernel operating system. System
software may control which processes can communicate.

The remote write process and remote notify processes
described herein may provide integration with operating
system functions. For example, by allowing messages to be
sent to a receiver that has been pre-empted, and allowing a
thread to be migrated between cores in a machine, or for the
whole machine to be suspended/resumed for power man-
agement. This may be beneficial in a multi-programmed
machine in which a core may be multiplexed between
several processes over time.

The remote write process and remote notify processes
described herein may provide effective functionality for
large numbers of communication channels. For example, to
allow a system process to communicate with all other
processes in the system. (A message channel is backed by
storage in physical memory which is relatively plentiful in
a machine, rather than being backed by space within a
dedicated message passing buffer memory which may be
scarce).

FIG. 13 illustrates various components of an exemplary
multi-core computing-based device 1300 which may be
implemented as any form of a computing and/or electronic
device, and in which embodiments of the remote write and
remote notification processes described herein may be
implemented.

Computing-based device 1300 also comprises one or
more processing cores 1302 which may be microprocessors,
controllers or any other suitable type of processors for
processing computing executable instructions for general
purpose computing and also for implementing the remote
write and remote notification processes described herein.
The cores 1302 may be of different types such as a mixture
of graphics processors and general purpose processors or
may be of the same type. For example, the cores may be as
described above with reference to FIGS. 2 or 3. In some
examples, for example where a system on a chip architecture
is used, the processors 1302 may include one or more fixed
function blocks (also referred to as special-purpose cores)

20

25

30

35

40

45

55

14

which implement a part of the methods described herein in
hardware (rather than software or firmware) Platform soft-
ware comprising an operating system 1308 or any other
suitable platform software may be provided at the comput-
ing-based device to enable application software 1310 to be
executed on the device.

The cores 1302 are in communication with an intercon-
nect 1304. The cores 1302 share a physical memory 1306 via
the interconnect 1304.

The computer executable instructions may be provided
using any computer-readable media that is accessible by
computing based device 1300. Computer-readable media
may include, for example, computer storage media such as
memory 1306 and communications media. Computer stor-
age media, such as memory 1306, includes volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EPROM,
EEPROM, flash memory, phase change memory, memris-
tors or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other non-transmission medium that
can be used to store information for access by a computing
device. In contrast, communication media may embody
computer readable instructions, data structures, program
modules, or other data in a modulated data signal, such as a
carrier wave, or other transport mechanism. As defined
herein, computer storage media does not include communi-
cation media. Although the computer storage media
(memory 1306) is shown within the computing-based device
1300 it will be appreciated that the storage may be distrib-
uted or located remotely and accessed via a network or other
communication link (e.g. using communication interface
1320)

The computing-based device 1300 also comprises an
input/output controller 1314 arranged to output display
information to a display device 1316 which may be separate
from or integral to the computing-based device 1300. The
display information may provide a graphical user interface.
The input/output controller 1314 is also arranged to receive
and process input from one or more devices, such as a user
input device 1318 (e.g. a mouse or a keyboard). This user
input may be used to set configuration parameters and to use
the computer for general purpose computing. In an embodi-
ment the display device 1316 may also act as the user input
device 1318 if it is a touch sensitive display device. The
input/output controller 1314 may also output data to devices
other than the display device, e.g. a locally connected
printing device.

The term ‘computer’ is used herein to refer to any device
with processing capability such that it can execute instruc-
tions. Those skilled in the art will realize that such process-
ing capabilities are incorporated into many different devices
and therefore the term ‘computer’ includes PCs, servers,
mobile telephones, personal digital assistants and many
other devices.

The methods described herein may be performed by
software in machine readable form on a tangible storage
medium e.g. in the form of a computer program comprising
computer program code means adapted to perform all the
steps of any of the methods described herein when the
program is run on a computer and where the computer
program may be embodied on a computer readable medium.
Examples of tangible (or non-transitory) storage media

US 9,471,532 B2

15

include disks, thumb drives, memory etc and do not include
propagated signals. The software can be suitable for execu-
tion on a parallel processor or a serial processor such that the
method steps may be carried out in any suitable order, or
simultaneously.

This acknowledges that software can be a valuable, sepa-
rately tradable commodity. It is intended to encompass
software, which runs on or controls “dumb” or standard
hardware, to carry out the desired functions. It is also
intended to encompass software which “describes” or
defines the configuration of hardware, such as HDL (hard-
ware description language) software, as is used for designing
silicon chips, or for configuring universal programmable
chips, to carry out desired functions.

Those skilled in the art will realize that storage devices
utilized to store program instructions can be distributed
across a network. For example, a remote computer may store
an example of the process described as software. A local or
terminal computer may access the remote computer and
download a part or all of the software to run the program.
Alternatively, the local computer may download pieces of
the software as needed, or execute some software instruc-
tions at the local terminal and some at the remote computer
(or computer network). Those skilled in the art will also
realize that by utilizing conventional techniques known to
those skilled in the art that all, or a portion of the software
instructions may be carried out by a dedicated circuit, such
as a DSP, programmable logic array, or the like.

Any range or device value given herein may be extended
or altered without losing the effect sought, as will be
apparent to the skilled person.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. The embodiments are not limited to
those that solve any or all of the stated problems or those that
have any or all of the stated benefits and advantages. It will
further be understood that reference to ‘an’ item refers to one
or more of those items.

The steps of the methods described herein may be carried
out in any suitable order, or simultaneously where appro-
priate. Additionally, individual blocks may be deleted from
any of the methods without departing from the spirit and
scope of the subject matter described herein. Aspects of any
of the examples described above may be combined with
aspects of any of the other examples described to form
further examples without losing the effect sought.

The term ‘comprising’ is used herein to mean including
the method blocks or elements identified, but that such
blocks or elements do not comprise an exclusive list and a
method or apparatus may contain additional blocks or ele-
ments.

It will be understood that the above description of a
preferred embodiment is given by way of example only and
that various modifications may be made by those skilled in
the art. The above specification, examples and data provide
a complete description of the structure and use of exemplary
embodiments of the invention. Although various embodi-
ments of the invention have been described above with a
certain degree of particularity, or with reference to one or
more individual embodiments, those skilled in the art could

10

15

20

25

30

35

40

45

50

55

60

65

16

make numerous alterations to the disclosed embodiments
without departing from the spirit or scope of this invention.
The invention claimed is:
1. A method at a multi-core processor having a plurality
of cores and at least one shared physical memory, the
method comprising:
sending an update to a portion of the shared physical
memory as a memory write request from a first one of
the cores, being a sending core, to a destination core;

receiving the memory write request at the destination
core;

executing the memory write request into a cache memory

hierarchy at the destination core as if it originated from
the destination core.

2. A method as claimed in claim 1 comprising: creating a
data structure in the shared physical memory, written by at
least the sending core and read by a single core being the
destination core.

3. A method as claimed in claim 2 comprising using
operating system kernels at the sending and destination
cores to map a common area of physical memory for the data
structure into virtual address spaces local to each of the
sending and destination cores; and updating operating sys-
tem data structures to configure that a write to the virtual
address on a sending core is implemented by the memory
write request to the destination core.

4. A method as claimed in claim 1 wherein the destination
core is identified by the sending core using control metadata
established during a configuration process and cached at the
sending core using a buffer which is selected from any of: a
translation lookaside buffer extended to incorporate the
control metadata; and a dedicated communication transla-
tion buffer which stores the control metadata.

5. A method as claimed in claim 1 wherein the plurality
of cores are interconnected using a hierarchical cache struc-
ture without a cache coherency mechanism.

6. A method as claimed in claim 1 wherein the plurality
of cores are interconnected using a hierarchical cache struc-
ture with a cache coherency mechanism.

7. A method as claimed in claim 1 comprising executing
a request at the destination core indicating that a value
written by the memory write request is no longer needed and
clearing that value from a cache of the destination core
before that value is written to the shared memory.

8. A method as claimed in claim 1 wherein executing the
memory write request into a cache memory hierarchy at the
destination core is carried out so that a value written by the
memory write request into the cache memory hierarchy at
the destination core is visible to processes running at the
destination core.

9. A method at a multi-core processor having a plurality
of cores which share at least one physical memory the
method comprising:

configuring a notification data structure at the shared

physical memory and establishing a representation of
that notification data structure at a virtual address space
of each of the plurality of cores, each virtual address
space being a mapping of at least part of the shared
physical memory at a core;

at a sending core, being one of the cores, obtaining

information about which of a set of events has
occurred;
notifying a destination core of the information, the des-
tination core being one of the plurality of cores, by:

updating the notification data structure or the representa-
tion of that notification data structure at the destination
core virtual address space; and

US 9,471,532 B2

17

at least one of:

updating the notification data structure or the represen-
tation of that notification data structure at the desti-
nation core virtual address space by sending a
memory notify request from the sending core to the
destination core to write a value which represents
which of the set of events has occurred at the
destination core, as if that notification data structure
update originated from the destination core;

updating the notification data structure or the represen-
tation of that notification data structure at the desti-
nation core virtual address space by sending a
memory notify request from the sending core to the
destination core to write a value which represents
which of the set of events has occurred at the
destination core, as if that notification data structure
update originated from the destination core, the
updating further comprising using an OR operation;

information about which of a set of events has occurred
comprises information about message channels and
the notification data structure comprising a bit vector
wherein each bit of the bit vector is associated with
one or more of the message channels;

updating the notification data structure or the represen-
tation of that notification data structure at the desti-
nation core virtual address space by sending a
memory notify request from the sending core to the
destination core to write a value which represents
which of the set of events has occurred at the
destination core, as if that notification data structure
update originated from the destination core, wherein
the sending core is only allowed to send the memory
notify request to the destination core under specified
conditions;

updating the notification data structure or the represen-
tation of that notification data structure at the desti-
nation core virtual address space by sending a
memory notify request from the sending core to the
destination core to write a value which represents
which of the set of events has occurred at the
destination core, as if that notification data structure
update originated from the destination core, and
providing a notification white list at each core com-
prising address mask pairs and only allowing the
sending core to send the memory notify request to
the destination core if the address of the destination
core and the value to be written by the memory
notify request are present in the notification white list
as an address mask pair; or

using a cache coherency mechanism to interconnect the
plurality of cores; and at the destination core, notic-
ing a cache coherency invalidation for the notifica-
tion data structure and sending a fetch from the
destination core to the shared memory for the noti-
fication data structure.

10. A method as claimed in claim 9 comprising updating
the notification data structure or the representation of that
notification data structure at the destination core virtual
address space by sending a memory notify request from the
sending core to the destination core to write a value which
represents which of the set of events has occurred at the
destination core, as if that notification data structure update
originated from the destination core.

10

15

20

25

30

35

40

45

50

55

60

18

11. A method as claimed in claim 10 which further
comprises using a logical OR operation to carry out the
update.

12. A method as claimed in claim 10 which further
comprises only allowing the sending core to send the
memory notify request to the destination core under speci-
fied conditions.

13. A method as claimed in claim 10 which further
comprises providing a notification white list at each core
comprising address mask pairs and only allowing the send-
ing core to send the memory notify request to the destination
core if the address of the destination core and the value to be
written by the memory notify request are present in the
notification white list as an address mask pair.

14. A method as claimed in claim 9 wherein the notifi-
cation data structure comprises a bit vector.

15. A method as claimed in claim 14 wherein information
about which of a set of events has occurred comprises
information about message channels and wherein each bit of
the bit vector is associated with one or more of the message
channels.

16. A method as claimed in claim 9 wherein notifying the
destination core causes the destination core to call a notifi-
cation function.

17. A method as claimed in claim 16 comprising using at
least four notification control registers at each core, one to
hold a watch flag, one to hold a mask representing infor-
mation about which of the plurality of events has occurred,
one to hold a watched area being the virtual address space
of the notification data structure, and one to hold a notifi-
cation target function.

18. A method as claimed in claim 9 comprising: using a
cache coherency mechanism to interconnect the plurality of
cores; and at the destination core, noticing a cache coher-
ency invalidation for the notification data structure and
sending a fetch from the destination core to the shared
memory for the notification data structure.

19. A multi-core processor comprising:

a plurality of cores interconnected using a hierarchical

cache structure;

at least one shared physical memory, arranged to com-

municate with the plurality of cores using the hierar-
chical cache structure;

a data structure at the shared physical memory;

one of the cores being a sending core, arranged to send a

memory write request to a destination core, being one
of the cores, to update the data structure at the shared
physical memory which is mapped into virtual address
spaces at parts of the cache structure local to each of the
sending and destination cores;

the destination core being arranged to receive the memory

write request and to execute the memory write request
as if it originated from the destination core and so that
a value written by the memory write request is stored
in the virtual address space of the destination core in
such a manner that it is visible to processes running at
the destination core.

20. A multi-core processor as claimed in claim 19 wherein
each core comprises a buffer arranged to store control
metadata for enabling a sending core to identify a destina-
tion core and where the buffer is any of an extended
translation lookaside buffer and a communications transla-
tion buffer holding only control metadata for enabling a
sending core to identify a destination core.

#* #* #* #* #*

